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ABSTRACT

The elastic-plastic fields near a notch tip in strain hardening materials are investigated
and modelled for a wide range of notch configuration, geometry, and load levels. Two
engineering methods that are commonly employed for determining the elastic-plastic
response at a notch tip are first assessed, and the results indicate that Neuber's rule and
its various extensions tend to overestimate the plastic strain at the notch-tip, and
under-estimate the plastic strain away from the notch-tip. By contrast, the ESED
method tends to underestimate the plastic strain at the notch-tip and its accuracy
deteriorates as the load level increases. It is found that both methods are unable to
provide satisfactory predictions of the stress-strain distribution ahead of a notch tip. To
this end, an engineering approach is developed to characterise the stress-strain
distribution in the notch-tip plastic zone, taking into account of the in-plane and
through-thickness constraints near the notch root. Predictions are compared with finite
element results, showing a good correlation for all the cases investigated.
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Elastoplastic Analysis of Notch-Tip Fields
in Strain Hardening Materials

Executive Summary

For most load-carrying structures, stress concentration sites are inevitably the most
important locations critical to the safety and structural integrity of structures. In
particular, the primary structures of modem military aircraft are designed to carry
high loads or stresses, plastic deformation near stress concentration sites, such as
notches and cut-outs, is of great importance, as it is the plastic deformation that is the
driving force for fatigue failure. Therefore, the ability to evaluate the elastic-plastic
stress-strain distribution at a notch root is the pre-requisite to durability and damage
tolerance analysis, and is consequently of primary importance to the safe management
of platforms and development of repair or life extension strategies.

Although it is well known that the stress/strain at the notch tip can be approximately
determined using Neuber's rule and the Equivalent Strain Energy Density (ESED)
method, there does not exist a method for determining the stress and strain
distributions ahead of the notch tip. In the present work, the elastic-plastic notch-tip
fields in strain hardening materials are investigated and modelled for a wide range of
notch configuration, geometry, and loads. The results suggest that both Neuber's rule
and the ESED method fail to give satisfactory predictions of the stress-strain
distributions ahead of a notch tip. An engineering approach is proposed to model the
stress-strain distribution in the notch plastic zone, accounting for the in-plane and out-
of-plane plastic constraints around a notch tip. Comparisons with finite element results
demonstrate that the present method correlates well the finite element results.

The solutions presented in this report provide a computationally efficient method for
determining the stress/strain distributions ahead of a notch root, which is critical to the
damage tolerance analysis of aircraft structures. This is particularly important to the
development of in-country damage tolerance analysis support for the RAAF's F-111
fleet.
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NOMENCLATURE

E = Young's modulus
E, = secant modulus

v = Poisson's ratio

Vep = effective Poisson's ratio
n = strain hardening exponent

CYs = yield stress

(7eq,-eq = equivalent stress and equivalent strain
x,y,z = coordinate with origin being at notch-tip

i,j,k = indices, ij,k=1,2,3,or x,yz; summation is implied
Xp = size of notch plastic zone

p = notch-tip radius
d = depth of notch
D = half width of a notched component.
S = remote stress

A = biaxial stress ratio

oUn = net section average stress
Kt = stress concentration factor

0 ii, -.ij = stress and strain tensor

(54 = Kronecker's delta

16, =, - elastic and plastic parts of total strain sij

TZ = out-of-plane stress constraint factor:cyzz/(aYxx+Cyyy)

TX = in-plane stress ratio:xyax/Gyy

WEQWeq = strain energy density defined by (aij,sij) and (aeq,6eq)

COmaxE = notch-tip ayy (x=O,y=O) obtained from linear elastic analysis
()E = elastic solutions
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1. INTRODUCTION

Stress concentrations in structures are frequently the sites of potential fatigue crack
initiation and eventual failure, especially for those designed to carry stresses close their
yield stress. In these structures, plastic deformation tends to occur in stress concentration
regions, and therefore it is important to accurately determine the elastic-plastic stresses
and strains. In the traditional local strain approach to fatigue life prediction, only the
stress or strain at the notch tip is required to determine the fatigue initiation life. In this
case, empirical methods such as Neuber's rule [1] and the equivalent strain energy
density (ESED) method [2] and various extensions [3-8] are frequently used to estimate
the elastic-plastic response at a notch-tip on the basis of elastic solutions. However, the
stress/strain distributions ahead of a notch tip are pre-requisite to the application of
advanced damage tolerance and durability analyses, where the stress distribution along
the potential crack path is required to calculate the driving force for fatigue crack growth.
Although finite element methods (FEM) are capable of providing the full field
stress/strain distribution within a structure, an efficient yet reliable analytical approach
is essential to facilitate rapid damage tolerance analysis and to reduce the cost associated
with performing detailed elastic-plastic finite element analysis.

Attempts have been made to extend either Neuber's rule or the ESED method to every
point ahead of a notch-tip. For example, Ball [9] used a modified Neuber's rule to
determine the elastic-plastic stress field ahead of a notch tip. However, the
fundamental question surrounding the validity of Neuber's rule when applied to a
point ahead of a notch-tip was not addressed, hence it is not clear what causes the
failure of existing notch approaches in characterising the notch field.

In this report, Neuber's rule and ESED assumption and their extensions are first
assessed with the aid of the finite element method. It is found that these methods are
unable to provide satisfactory estimates of the stress-strain distribution in the notch
plastic zone. An engineering method is then proposed in which the modified Neuber's
rule was used at one point ahead of the notch-tip, and the fields in the plastic zone
were then determined based on equilibrium considerations. Whenever possible
comparisons are made between the model predictions and finite element results to
demonstrate the capabilities of the new approach.

1.1 Stress Concentration at Notch Tips

The severity of stress concentration at a notch root is often measured by the stress
concentration factor, defined as the ratio of the stress at the notch tip to the remotely
applied nominal stress. Tabulations of the elastic stress concentration factors for a
variety of notch geometry and loading configurations have been documented in
handbooks (e.g. [10]). For some notch configurations, approximate formulae have also
been suggested to estimate the stress concentration factors (e.g.[11,12]).

3
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Under elastic-plastic conditions, several empirical methods are available to estimate the
notch-tip stress/strain based on the elastic solutions [12]. The two most popular ones
are Neuber's rule [1] and the ESED method [2]. Both of them have been derived for
simple stress states in which only one stress component exists at notch-tips. For
notched bodies in plane strain and axial-symmetrical problems, extensions of Neuber's
rule have been proposed by Topper et al.[3], Gemma [4] and Hoffman and Seeger [5],
and of the ESED method by Glinka [6], Moftakhar et al.[7] and Singh et al.[8]. These
methods are only briefly outlined in the following.

1.1.1 Neuber's rule

Consider a typical notched component shown in Figure 1, which is subjected to a
nominal stress and strain, denoted respectively as S and e. Neuber's rule states that the
maximum stress o- and strain 6 at the notch root under elastic-plastic deformation are
related through the following equation

(KtS)2( - s)2 
-(1)

E 
=

where Kt denotes the elastic stress concentration factor, and E the Young's modulus of
the material. Neuber's rule was originally proposed for notched components under
plane stress condition, where the stress at the notch-tip is in effect uniaxial. For plane
strain condition or general multiaxial stresses, two kinds of extensions have been
suggested [5,7]:

E E
eq eq eq eq (2)

r I6 C 0 " EE (3)
where the superscript E is used to denote the parameters pertaining to the
corresponding elastic solutions.

1.1.2 Equivalent strain energy density method (ESED)

This method was also originally proposed to estimate the notch-tip strains under
uniaxial stress conditions [2]

WE= (KtS)2 =WE, o-d8 (4)
2E

In the case of multiaxial stresses, similar extensions have been proposed [6-8], noting
the use of two definitions of the strain energy density (the difference will be discussed
later)

WE = (KS)2 eq = eq dEq (15)
2E =

WE = WEP = gfoardeu (6)

Moftakhar et al. [7] added another equivalent equation of fractional contribution of the
total strain energy density in trying to refine these methods to better model the general
multiaxial stresses.

4
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It is well recognised that that in most cases Neuber's rule overestimates the notch-tip
stresses and strains, while ESED method tends to underestimate the notch stress/strain
[13]. Furthermore, the accuracy of these methods depends strongly on the level of the
nominal stress relative to the material's yield stress, the material's constitutive law, the
stress concentration factor as well as the nature of the stress state.

1.2 Stress Distribution ahead of Notch Tip

The stress distribution ahead of the notch tip is essential to evaluating the stress
intensity factors (SIF) of cracks emanating from notches, which represents the driving
force for fatigue crack growth. Some authors have proposed direct extension of
Neuber's rule and the ESED method to every point ahead of notch-tip, but with little
success, the difficulty being that it is no longer appropriate to consider the stress state
to be one-dimensional, unlike the situation at the notch tip. Thus the problem in
essence is to estimate the rate of increase of the in-plane stress cr- in Figure 1 with
distance from the notch root. Furthermore, even in the case plane stress where there in
only one none-zero stress component, there are more than one stress components
ahead of the notch-tip, so additional equations are required to fully solve the problem.

In the following sections, Neuber's rule and the ESED method will be first assessed by
aid of finite element method. A new approach is then proposed to determine the stress
distributions ahead of notch-tip, and the predictions are compared with finite element
solutions.

2. FORMULATION OF THE PROBLEM

2.1 Definition of the Problem

Consider the typical notched body as shown in Figure 1, directly ahead of the notch-
tip, there are possibly three non-zero stress components. For convenience, let us define
an out-of-plane stress constraint factor T. and an in-plane stress ratio Tx,

T_= (7)
O'XX + Oryy(7

Oyy

T, = (8)

where TL=O for plane stress and T.=v for plane strain. Here v denotes the material's
Poisson's ratio.

5
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Figure 1: Notations for a notched component subjected to biaxial stresses.

2.2 Constitutive Relationships

According to the deformation theory of plasticity, the total strain Eij can be decomposed
into an elastic part gij and a volume-preserving plastic part sijP:

6.j = 6,.". + ei. (9)

where the elastic part is related to stress o. via Hooke's law:

_ l+v 1-2v (10)eI= E Sij l • miE (0

where ar,. = oa / 3, s. = C i - cr,.,,j, and

where E, represents the yet to be determined secant modulus. Substituting equations

(10) and (11) into equation (9), a relationship similar to Hooke's law can be obtained,
S+Vep - 2v p

S Ess+ (12)

where

VeP= - - ) E, (13)

Substituting equations (7) and (8) into equation (12) the tension strains can be obtained
as

6
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E - [(1= VepT )Tx -Vep (1 +Tz )yy,
SE,

±ty [(1- vep2%- vep (1 +7 )XI ,y (14)

Ezz = -I (Tz - V ep Xl + Tx )cryy.

The von Mises equivalent stress can be written as

3'eq = {[C 1(l +T~2)z-C 2 T] 72 C + 3(o+2 + C23 /2 (15)

where parameters C1 =- Tz + Tz2 and C2 =1 + 2T - 2T2.

The corresponding equivalent strain is
6%,q= Ve--,eo., e, = _,y - _,k,50 (16)

where the factor k is introduced to ensure that &eq is equal to the longitudinal strain in
a tensile test. In the fully plastic case, k=2/3. Under elastic-plastic situation, the
parameter k• is related to the effective Poisson's ratio,

2=3/[2(1+2vep +v 2)] (17)

For simplicity, let us adopt the following power hardening constitutive law; the
solutions presented in the following sections can be readily adapted to suit other
constitutive models,

E- = E (n=1 forrq < Cu y (18)

which is schematically shown in Figure 2. In this case, the secant modulus and the
effective Poisson's ratio can be explicitly expressed in terms of the equivalent stress,1 1 (~ys n-1

Ileqn Vep - (-v)(, (n=l foreq < Cys) (19)

E, E2
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2.5 Elastic (n=l)

2.0 n=3

1.5 
. n _

•~n=8

1.0 n=oo

0.5
- IE(a Ia )fl1, (n=1 for a <

V eqys ys

0 2 4 6 8 10

':eq 1pys

Figure 2: Linear elastic power hardening plastic uniaxial tensile stress-strain relationship

Under plane strain conditions, e. =0, the following solution is derived from equation

(13)

T= 1 1 v) (n=l for a,, <_0- Y (20)

In plane stress we have T, = 0. For structures with finite thickness, the average T.

through the thickness may vary between 0 and vep, depending on the geometry and

loading parameters.

2.3 Strain Energy Density

As discussed in Section 1.1, two different definitions of the strain energy density have
been employed in extending Neuber's and the ESED method to multiaxial stresses,

WEP = Oiydeij (21)

Weq = f'oeq d~eq (22)

While the first definition is the "correct" one for strain energy density, the second
definition is easier to compute, for it can be evaluated using the uniaxial stress/ strain
curve. In the case of linear elastic bodies, substituting equation (10) into the above
equations it can be shown that

WEP l+v a2 3(1-2v) 2 (23)

3E eq 2E

8
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2

W.7 oeq (24)
2E

It is clear that the two definitions are indeed different, although the difference is small

for low level hydrostatic stress, i.e., U-, << «-eq

For elastic-plastic bodies,
WEP= W(e) + W(6,) a o~ de + fC U-o de' (25)

where W(.-) is already given by equation (21), and W(e6.)can be obtained by

substituting equations (11) and (15) into equation (22), resulting,

n a 2C Uýeq _n~ 1 07¶2s q
W(.)n= _ o-,, 1 2 -1 (26)

So that
2y ý +q lo-Yso-eq +-1 + v9 + 3(l -2v (27

=2E - -- l+v= 3(1-2v) s (27)

W n+l E ! [C2 E a 3 E 2E

where the last term is the dilatation part of the strain energy density and the rest is the
distortional part.

From equations (18) and (22), it is easy to show that

-2 C ~ I
U . I II_"

eq [ + [ -] (28)

Therefore the difference between WE? and Weq is

WE, €' = 1-2v (90"2- _0"eq2) (29)

6E M e

Directly ahead of notch tip, i.e., on the plane y=O, the shear stress is zero (ay=O), so
from equations (15), (28) and (29) we get

WEP- Weq = (1-2v) (l+Tz)(l+Tx) (30)
W ()C1(I+TX2)

e~q 3j2

9
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0 .1 5 --- ---- ---. --.-. . -. --. --.-... . . -... . -----/ --. --.4. . -. --.. .. -. --. --. -.. -. --. -. .-.--.- ..- .

0.10 5 ----------- T- -

T =00 .5 -------:- ------------------ ---4 ----.........

0 0.2 0.4 0.6 0.8 1.0

T or Tx z

Figure 3: Differences between two strain energy density formulations.

This ratio is shown in Figure 3 in terms of the non-dimensional parameters T, and TI.
As seen in the figure, under plane stress condition, the maximum difference between the
two formulations is less than 5%. Under plane strain condition, with the increase in the
plastic yielding, T. increases form v to 0.5, resulting in a difference up to 17%.
Therefore, it can be concluded Weq can be used as reasonable approximation for WEQ for
the whole range of in-plane or through-thickness constraint.

2.4 Stress Distributions ahead of Notch-tips

To examine the common features of notch-tip fields, seven different types of notch
geometry as listed in Table 1 have been analysed by FEM under both plane stress and
plane strain conditions. For elastic-plastic calculations, a small strain, J2 incremental
theory of plasticity was used in the FEM analysis. The material was assumed to be
homogeneous, isotropic and to obey von Mises yield criterion and Prandtl-Reuss flow
rule. The response of the material in uniaxial tension is characterised by a linear-power
hardening law of the same form as equation (17). The ratio of the yield stress to the
Young's modulus is taken to be 1/2000 and Poisson's ratio is assumed to be 0.3 in all
the cases; stress results will normalised by the material's yield stress yu. The models
were meshed with 8-node iso-parametric elements. The meshes near the notch tip are
sufficiently fine to capture the stress/strain concentration. As shown in Table 1, the
stress concentration factors obtained by the FE method under elastic conditions are in

10
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close agreement with those documented in the literature [10]. Here the stress

concentration Ktn is defined as amax/ un and c- = [D /(D- d)]o applied with D and d

denoting respectively the half-width of plate and the half-depth of the notch.

11
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Table 1 Type of notches being considered

Centre circular hole, D/d=1O, p/d=1,, Kt,=2.7201 (2.72*).
2d

Case 1: Plane strain, n=10, k=O.

Case 11: Plane strain, n=3, k&=O.
2 •Case 12: Plane stress, n=8, ?k=O.S2D

Case 13: Biaxial tension (A=1), Ktn=1.8362
Plane strain, n=10.

Opposite semi-circular edge notches,
d D/d=10, t/d=1, Km=2.75 (2.75*)

S2D • Case 2: Plane strain, n=10.

Single edge notch, D/d=1,. p/d=l, Kt,=2.7553 (2.75*)

d

Case 3: Plain strain, n=10

2D

t Centre U-notch, D/d=3, p/d=0.54, Kt,=2.8027 (2.8*)

2d

Case 4: Plane strain, n=10.
Case 41:Plane strain, n=3.

Case 42:plane stress, n=8.

Single edge U-notch, D/d=3, p/d=0.54, Kt,=2.3928 (2.4*)

: Case 5: Plane strain, n=10

Double edge U-notch, D/d=3, 0/d=0.54, Kt,=2.58

Case 6: Plane strain, n=10
Case 61:Plane strain, n=3
Case 62:Plane stress, n=8

Double V-shaped notches, D / d=1.8, p / d=0.144, Kt=3.246

Case 7: Plane strain, n=10.
Case7l: Plane strain, n=3.
Case72: plane stress, n=8 &10.

* Peterson's stress concentration factor after [10].

12
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2.4.1 Linear Elastic Notch-Tip Stress Fields

Efforts have been devoted to construct approximate expressions for stress distribution
ahead of a notch-tip in elastic bodies [11-12]. Critical assessment of these expressions
can be found in [13]. More recently, Lazzarin and Tovo [14] obtained a set of unified
solution for cracks and V-notch with circular root.

The best known expressions for calculating stresses in the vicinity of a notch-tip are
those derived for circular and elliptical notches in an infinite plate under remote
loading. When the stress concentration factor Kt is introduced, the stress components in
the plane y-0 (see Figure 1) in an infinite plate having a circular hole can be obtained
under biaxial loading condition from the classical solution [15]:

O' 3 1 = j2--K L 2 A + 5 +lJ 3(1-2) +f]

)= K S 1 +2 x-A +1-2 3(1+) + A + +)-4 (32)S3-A12k (p• 2 (

where the parameter A is the biaxiality ratio. Equations (31-32) can be modified by the
approach proposed by Glinka and Newport [12] to take into account of the bending
effect,

S-2

KtS[ 2 +I +1 +( 1 (33)

3-1 +2 p 2 ( -3(12

K1 S 1+1+2 x + 31 +2) +3(]+A)(x34o'yy~ = _--- -• •+1 ++ 1 - (34)

Where K is the distance from notch tip to the neutral axis of the notched component, i.e.,
the y stress changes sign under bending. For centre notched and double edge notched
specimens listed in Table 1, Kc - oo. For single edge notched strip under tension,

Kc = (D - d) 1 + 1 d (35)

As reported by Glinka and Newport [12], Creager and Paris' solution for blunt cracks
can be used to estimate stress distribution near the tip of relatively sharp, deep notches:

-= +J(36)
K,S X+ 1 -/ X + ) 32(6

Kt = [ + -- + 1 +-- (37)

Comparison of Eqs.(31-32) and (36-37) with FE results is given in Figure 4 for the stress
oy, and in-plane stress ratio T.=uao',y. It can be seen that the above approximate
expressions provide reasonably good estimates of both the y-stress and the in-plane

13
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stress ratio. For shallow notches with d / p &1 and D / d >> 1, Equations (31-32) are

quite accurate. For deep notches with large d/p and/or small DId, the stress

distributions ahead of edge notches are better approximated by equations (36-37). For
edge notches, proper combination of equations (31-32) and equations (36-37) can lead
to better prediction. Thus, the following empirical formula is proposed here,

(Cr= ,O )= (1 - r7)((xxOryy )eq.(3,,32) + 7 ( 5-yy)eq.( 36 ,37) (38)

Where,
77= _• _ d (39)

ý+p/d' D-d

As shown by the solid line in Figure 4, with equation (38) the effects of d / p and D / d

on the distributions of cyy and Tx better estimates can be achieved over the region
0<_x/p•-3. For centre notch in a finite width plate, equation (31) can be used directly if
Did / 3.

1.0 Case 5 1.0 FE rmts Dashed curves: equation (38)
, Case 7

Points: FE - -Case 6 Ca7Cse3
Dashied lines: Eq.(39) - Case1 0 Case16•Case? 7 Cse 5

0.8 Case6 Case4
_ Case 5 • Case 1.3 TrF1

& Case 3 V Case2 Cs
9 Case 2 V Cage 1

0.6 9 Case 13 069 Case 1 •II 1

0.4 0.4

0.2@aog0r " as1-

0 1 2 3 4 5 0 2 3

x/P X/p

(a) (b)

Figure 4: Distributions of elastic stresses ahead of notch-tips; (a) Normalised stress cyyy ahead of
notch tip, (b) In-plane stress ratio ahead of notch tip.

2.4.2 Elastic-plastic Notch-tip Fields

Plastic yielding will invariably occur if the remotely applied stress exceeds a certain
level, and the resulting stress distributions will deviate from the corresponding elastic
case. Figures 5 and 6 show the elastic-plastic notch-tip fields of notch case 1 (under
plane strain condition) at various stress levels. It is seen in Figure 5 that with the
increase of the nominal stress (rj1oy,), the in-plane stress ratio T. increases slightly

14
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beyond x/p=0.3, while the tensile stress oyy at the notch-tip decreases. The small
change in T. suggests that the two in-plane stress components remain approximately
proportional during the plastic deformation. By contrast, the out-of-plane constraint
(T2) at the notch-tip increases considerably from the Poisson's ratio (v=0.3) to ± (see
Figure 5). Therefore the elastic solution is apparently inadequate for determining the
elastic-plastic stress distribution in the notch-tip fields. A new method is called for to
account for this stress redistribution resulting from plastic deformation.

1.0
stress level a /a

Plane strain centre circular hole n Ys

Uniaxial tensile, n=10 - 1.0635
is 0.9744

0.8 *-u 0.8674
Sp0.7231

Wy-. Elastic
X

E£ 0.6

xx yyy

.51.0 1.5 2.0

x/p

Figure 5: Distribution of elastic-plastic stresses ahead of notch-tip for CASE 1.

1.2
Plane strain centre circular hole stes nevla.1

1.1 Uniaxial tensile, n=10 a 1.0635
A 0.9744

.0.8674
,N 0.7 SElastic

. 0.8

S0.7

0.6
Tz

0.5

0.4 •

0 0.2 0.4 0.6 0.8 1.0

x/p

Figure 6: Equivalent stress and constraint factor Tý ahead of the notch-tip in CASE 1
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Figure 7 shows the distributions of T, ahead of notch-tip for all the cases being
examined. It is interesting to note that the distribution of T, within the notch plastic
zone is far less sensitive to the notch geometry, load levels and stress states, especially
at a small distance from the notch tip. For deeper edge notches (Case 5 to 7.2) and
centre notch under biaxial loading (Case 1.3), the distribution of T" in the plastic zone
fall almost onto the slip-line field solution [16], as shown in Figure 7

Sln( + x / p)
lTlxl =p)(40)1 + ln(1 + x / p)

where x is distance measured from the notch-tip. By contrast, for centre notches and
shallow edge notches (Case 1 to 4.2), the data lie close to that of Case 1.2 in net section
yield.

For all the cases listed in Table 1, the difference between elastic and elastic-plastic Tx as
shown in Figure 7 is less than 22%, so as a simple approximation, the hypothetical
elastic solutions of T, can be used to predict elastic-plastic notch-tip fields. This is in
effect assuming that the two in-plane stress components remain proportional during
plastic deformation. Improved correlation can be obtained by curve fitting the elastic-
plastic solution of Tx. For example, the results of case 12 under net section yielding can
be well approximated by the following expression with accuracy better than 1 per cent,

T, =A-+B x +C J, (for x/p<2) (41)

where A=8825, B=-0.7342, C=0.1685. As shown by Figure 7, equation (41) can be used
for very shallow notches.
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Figure 7: Distributions of the ratio T. ahead of notch-tip under elastic-plastic condition.

2.4.3 Assessment of Neuber's Rule and ESED Rule

To examine the capabilities of Neuber's rule and the ESED method in evaluating the
stresses ahead of notch tip, the predictions based on Neuber's rule and the ESED
method for the case of a centre circular hole are shown in Figure 8. The parameters oqe

eq and W are normalised respectively by their hypothetical elastic values. Two
observations can be made here. Firstly, the normalised ratios significantly exceed unity,
an expected ratio for Neuber's rule or the ESED method to be valid. This clearly
demonstrates the failure of both methods to predict the distribution of stresses and
strains ahead of the notch-tip. Secondly, the normalised ratios at a given distance
ahead of the notch-tip exhibit a dependence on the level of the applied loads. This
implies that the plastic deformation at the notch root is causing significant stress
redistribution ahead of the notch tip.
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(b) plane stress condition

Figure 8: Neuber's Rule and ESED method for centre circular notch under (a) plane strain and
(b) plane stress conditions.
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Figure 9: Neuber's rule and ESED method for a V-notch (Case 7).
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Figure 10: Neuber's rule and ESED method for centre circular notch under biaxial tensile,
plane strain (Case 13)

Figures 9 show the results for a V-notch with a semi-circular tip of radius p. The
parameters Ceq-eq and W are normalised respectively by their hypothetical elastic
values. It is seen that the ratios deviate significantly from unity, contrary to what
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would be expected from Neuber's rule and the ESED method. At the notch-tip (x=O),
the normalised parameter a(eqeq is lower than the hypothetically elastic ones,
suggesting that Neuber's rule and its extension will over-estimate the notch-tip strains.
By contrast, the normalised strain energy density W exceeds the hypothetical elastic
values, consequently the ESED method would under-estimate the notch-tip strains.
This suggests that the average of the two predictions may provide an improved
prediction of the notch-tip strains.

Under biaxial loading, however, the deviation from unity (see Figure 10) is less
pronounced than the two cases shown in Figures 8 and 9. This means that Neuber's
rule and the ESED method may yield a better prediction. It is interesting to note in
Figures 8 and 9 that the curves of normalised o-eq6 eq intersect with the corresponding

elastic curve at nearly the same point about x/p = 0.06. This feature will be exploited
later for improving the accuracy of Neuber's rule.

3. PREDICTION OF STRESS-STRAIN
DISTRIBUTION

In this section, an engineering method will be developed to predict the stress-strain
distribution ahead of a notch tip based on the elastic solutions. All the analysis will be
limited to the net section, or along the plane y=0.

3.1 Prediction Model

By inspecting the distribution of the equivalent stress within the plastic zone obtained
by FE analyses, it is postulated that the equivalent stress in the plastic zone ahead of a
notch-tip can be well approximated by a rational function,

a, WX = (42)

Crys x+a
where the parameters A and t can be determined by making use Neuber's rule (or the
ESED method) and an equilibrium condition as outlined below.

The continuity of the equivalent stress the elastic and plastic boundary, x=xp, leads to
A = xP + a (43)

where xp denotes the plastic zone size, which will be determined later. The parameter a
can be inferred by making use Neuber's rule (or the ESED method) at the notch root.
For material obeying the power-law strain hardening given by equation (18), the
following relationship can be derived,

- B1 (1+ -)1 (44)
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where

Kr°'n (Neuber' s rule)

B2 (45)
B= n+l1 Kr?• 9 1 +1 (ESED method)
2n a

Now with equation (46) the equivalent stress at position x can be expressed as

O', =(x) xBll(+)+( (46)

The plastic zone size xp is the only remaining unknown. A first order estimate of xp can
be made by equating the hypothetical elastic stress to the yield stress,

o0Eq (XPO) = Oya (47)

where xpo denotes the first order estimate of the plastic zone size. In doing so the effect
of the stress redistribution induced by the plastic deformation has been ignored, and
the estimated xpo is expected to be smaller than the actual extent of the plastic
deformation. Improvement can be achieved by using a method similar to that
proposed by Irwin [17] for sharp cracks. The basic idea is that the occurrence of
plasticity makes the notch behave as if it were deeper than its physical size. The
effective notch size (deff) is equal to the d + xp0 , and the actual plastic size is xp. In

Figure 11, the elastic stress distribution at the tip of the effective notch is the same as
that for the original notch except that the origin of the coordinate is shifted to o' as
shown in Figure 11(a). Overall equilibrium requires that the load carried by the net
section should remain the same, in other words, the areas of the hatched regions in
Figures 11(b) and (c) should be equal. This can be mathematically expressed as,

fp cy, (x)dx = f-X0o oE (x)dx (48)

where the y-stress ahead of the notch tip is given by, noting equation (15)
0'yy = Ceq(x)/g(Tz,Tx) (49)

with
g(T,TX) = [(1- T7 + T,)(1 + T2)- (1 + 2, 2T)T]1/2 (50)

and T. being given by equation (20). It should be noted that vep can be evaluated using
equation (19).
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Figure 11: Model of elastic-plastic zone and stress relationships

Due to the complexities of T×, no closed-form solution of the integral on the left-hand
side of equation (50) is possible, however, the only unknown in the equation is xp,
which can be readily obtained numerically by means of Newton-Raphson's method
using xpo as an initial guess. Once xP is determined, the equivalent stress and the y-
stress can be determined respectively from equations (48) and (51), for the in-plane
stress ratio Tx is well approximated by either the corresponding elastic solution or the
slip-line field solution given by equation (40). The y-strain is given by

6 1-+-T [(1-rz)-Tý'rxkay (51)

Other stress and strain components can be obtained from equation (14).

3.2 Application of modified Neuber's rule

Since the previous analyses have found that the original Neuber's rule tends to
overestimate the stresses and strains at notch-tip, one simple improvement would be to
re-cast Neuber's rule at a distance xo ahead of the notch-tip, i.e.

[0- (x0 )]
aeq eeq - £ E (52)
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which leads to

B = ) (53)

The previous analyses suggest that x0  0.06p for the cases being studied. The
analysis then follows exactly that outlined in Section 4.1.

3.3 Validation of the Model

To verify the proposed method, stress and strain distributions ahead of notch-tips have
been predicted for the cases listed in Table 1 and results are compared with the FE
calculations as shown in Figures 12 to 20. In these figures, symbols represent FE results,
and lines denote predictions. In particular, dashed lines represent the predictions made
using elastic T. while solid lines represents predictions made using the empirical
expression of TL given by equation (41). Except for the biaxial tension case, the
modified Neuber's rule is employed at x/p=0.06. Figures 12 show the results for a
centre circular hole in a relatively wide plane strain strip with the material having a
strain hardening exponent n=10. When the stress level c, / o's is lower than 0.8, use of

both the elastic T. and the elastic-plastic T, yields nearly the same predictions. For
higher applied stress, better predictions are obtained if the elastic-plastic Tx is
employed.

As shown in Figures 12(a), 15(a), and 19(a), the postulated functional relation of the
equivalent stress does provide a good correlation with the FE results within the whole
plastic zone. As shown in Figure 16, the agreement between the predictions and the FE
results seems to improve for materials exhibiting strong strain hardening (smaller
strain hardening exponent). So comparisons for other cases with n=3 will not be
discussed in the following.

It should be pointed that the present method is applicable only when the plastic
deformation around the notch root is constrained, viz, the plastic zone size is smaller or
comparable to the notch root radius. This is because under large scale yielding, neither
Neuber's rule nor the ESED method is able to predict the responses at notch-tip [18].
Two examples under plane stress conditions are shown in Figures 21 and 22, indicating
a significant under-estimation of the strain distributions. In practical applications,
however, such cases are relatively rare as most structures would not be designed to
operate under such high stresses.
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4. CONCLUSIONS

1. Both Neuber's rule and the ESED method have been found to significantly
underestimate the distributions of stress and strain ahead of a notch tip, although
these two methods can yield reasonable predictions of the notch-tip response.

2. Within the notch plastic zone, the two in-plane stress components are found to
remain approximately proportional, allowing the direct application of the elastic
solutions for the in-plane stress ratio.

3. A new method has been developed to determine the stresses and strains ahead of a
notch tip; comparisons with finite element results demonstrate that the predictions
of the method are in close agreement with the FE results.

4. The new method is also able to predict the size of the notch plastic zone.
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Figure 12: Prediction of stress-strain fields ahead of the notch-tip in CASE 1
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Figure 14: Prediction of strain ahead of the notch-tip in CASE 1.2
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Figure 15: Prediction of stresses (a) and strain (b) ahead of the notch-tip in CASE 1.3
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Figure 17: Prediction of strain ahead of the notch-tip in CASE 4.2
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Figure 18: Prediction of strain ahead of the notch-tip in CASE 6
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Figure 19: Prediction of stress (a) and strain (b) ahead of the notch-tip in CASE 7
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Figure 20: Prediction of strain ahead of the notch-tip in CASE 7.2
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Figure 21: Prediction of stress (a) and strain (b) ahead of the notch-tip in CASE 82 at higher
stress level
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Figure 22: Prediction of stress (a) and strain (b) ahead of the notch-tip in CASE 5 at higher
stress level
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